Foods, Vol. 12, Pages 4400: Extraction of Bioactive Compounds from Spent Coffee Grounds Using Ethanol and Acetone Aqueous Solutions

foods-12-04400-g001-550.jpg?1701932166

Foods, Vol. 12, Pages 4400: Extraction of Bioactive Compounds from Spent Coffee Grounds Using Ethanol and Acetone Aqueous Solutions

Foods doi: 10.3390/foods12244400

Authors: Ibtissam Bouhzam Rosa Cantero María Margallo Rubén Aldaco Alba Bala Pere Fullana-i-Palmer Rita Puig

Given global coffee consumption, substantial quantities of spent coffee grounds (SCGs) are generated annually as a by-product of brewing coffee. SCG, although rich in bioactive compounds, is nowadays disposed of. The objective of this study is to compare, for the first time and from the same SCG, the efficiency of ethanol–water mixtures and acetone–water mixtures for the recovery of total polyphenols, chlorogenic acid, and caffeine. Acetone at 20% (m/m) was the most convenient solvent to extract all three bioactive compounds simultaneously, yielding 4.37 mg of GAE/g SCG for total polyphenols, chlorogenic acid (0.832 mg 5-CQA/g SCG), and caffeine (1.47 mg/g SCG). Additionally, this study aims to address some challenges associated with the industrial-scale utilization of SCG as a raw material, encompassing factors such as pre-treatment conditions (natural drying and oven drying), storage duration, and the kinetics of the extraction process. No significant difference was observed between the natural drying and oven drying of SCG. In terms of storage duration, it is advisable to process the SCG within less than 3–4 months of storage time. A significant decline of 82% and 70% in chlorogenic acid (5-CQA) and caffeine contents, respectively, was observed after eight months of storage. Furthermore, the kinetic study for the recovery of total polyphenols revealed that the optimal extraction times were 10 min for acetone at 20% and 40 min for water, with a yield increase of 28% and 34%, respectively. What is remarkable from the present study is the approach considered, using the simplest operating conditions (minimal time and solvent-to-solid ratio, and ambient temperature); hence, at an industrial scale, energy and resource consumption and equipment dimensions can be together reduced, leading to a more industrially sustainable extraction process.

タイトルとURLをコピーしました